Package: dupiR 1.2.1
dupiR: Bayesian Inference from Count Data using Discrete Uniform Priors
We consider a set of sample counts obtained by sampling arbitrary fractions of a finite volume containing an homogeneously dispersed population of identical objects. This package implements a Bayesian derivation of the posterior probability distribution of the population size using a binomial likelihood and non-conjugate, discrete uniform priors under sampling with or without replacement. This can be used for a variety of statistical problems involving absolute quantification under uncertainty. See Comoglio et al. (2013) <doi:10.1371/journal.pone.0074388>.
Authors:
dupiR_1.2.1.tar.gz
dupiR_1.2.1.zip(r-4.5)dupiR_1.2.1.zip(r-4.4)dupiR_1.2.1.zip(r-4.3)
dupiR_1.2.1.tgz(r-4.4-any)dupiR_1.2.1.tgz(r-4.3-any)
dupiR_1.2.1.tar.gz(r-4.5-noble)dupiR_1.2.1.tar.gz(r-4.4-noble)
dupiR_1.2.1.tgz(r-4.4-emscripten)dupiR_1.2.1.tgz(r-4.3-emscripten)
dupiR.pdf |dupiR.html✨
dupiR/json (API)
NEWS
# Install 'dupiR' in R: |
install.packages('dupiR', repos = c('https://federicocomoglio.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/federicocomoglio/dupir/issues
Last updated 8 months agofrom:ddb65a941a. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 17 2024 |
R-4.5-win | OK | Nov 17 2024 |
R-4.5-linux | OK | Nov 17 2024 |
R-4.4-win | OK | Nov 17 2024 |
R-4.4-mac | OK | Nov 17 2024 |
R-4.3-win | OK | Nov 17 2024 |
R-4.3-mac | OK | Nov 17 2024 |
Exports:compute_posteriorget_countsget_fractionsget_posterior_paramnew_countsplotplot_posteriorset_counts<-set_fractions<-summary
Dependencies:plotrix